Supplementary Note 2

1 Derivation of the fractional DNA occupancy as a function of buffered metal concen-
tration

1.1 Chemical equilibria and mass balance

In the following system:
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The constants K;_4 are connected by the following relationship

The fraction of DNA bound to sensor protein (6p) and the sub-fraction bound solely to metalated sensor

protein (6py) are defined at each metal concentration as:
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where

[Dr] = [D]+ [PD] + [PMD]

[Dr] is the concentration of DNA targets and its value is independent of the buffered metal concentration

[M]. At any given buffered metal concentration, the total protein concentration [Pr] is:
[Pr] = [P]+[PM] + [PD] + [PMD].

The protein abundance and fractional DNA occupancy are both dependent on [M]. Relating linearly [Pr]

and Op for co-repressors and de-repressors:

[Pr] —[Po] _ 6p—6po
[Pl —[P]  6pb1—6po’

where [Py] and 6p are the total protein concentration and the fractional DNA occupancy at low cognate

3)

metal concentration, respectively, and [P;] and 6p; are the equivalent values calculated high cognate



metal concentration. An equivalent equation can be written for CueR and ZntR-like activators, with a

linear relationship between [Pr| and Opy:

[Pr] = [P] _ 6om—6Obmo
[Pl]—[P]  Opmi —Bpmo

The numerical values of 6pg, Op1, Opmo and Bpy; can (in the first instance, see 1.3.2 and 1.3.4) be

“

derived from the computational approach we recently developed'3.

1.2 Variables

To simplify derivation, variables and constants are renamed as follows:

x=1[P, v =[PD], a=Ki,
y=[M], w = [PMD], b=Ks,
z=[D], Pr=[Pr], c=Ks,

Dr = [Dq], Py =[P, d=K;.
u=[PM], P = [P],

1.3 Derivation of equations

Here the equations expressing Op and Opy as a function of the buffered metal concentration y are de-

rived. From the chemical equilibria and mass balances the following relationships between variables are

obtained:
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Using (5), (6) and (7), u and w can be expressed as:
U = axy, w = bvy = duz. (10)
With (8) v can be determined:
Dr=z+v+w=z+v+duz = v=Dr—z—duz.
By substituting v into (10) z can be expressed as

byv = by(Dr — z —duz) = duz,

_ Dtby
‘= du+Dby—+bduy’



1.3.1 Derivation of equation to determine 6p for co-repressors and de-repressors

Equation (3) can be rewritten as
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The definition of Op from (1) can be rearranged as:
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z and u can be substituted into (14) to find x
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x(1+ay)(adx+ b+ abdxy) — C\Dtb = Cy(adx + b+ abdxy),

x*(1 +ay)(ad + abdy) + x[b(1 + ay) — Cy(ad + abdy)| — C\Dtb — Cyb = 0.

(11)

(12)

(13)

(14)

(15)

(16)

(17)

Equation (17) expresses the variable x (corresponding to [P]) as a function of y, the buffered metal

concentration [M]. It can be rewritten, introducing the coefficients a, 8,7, as

x>+ Bx+y=0,
where
o = (1+ay)(ad + abdy),
B =b(1+ay) —Cy(ad + abdy),

y=—b(CiDr+ ().

By substituting the numerical values of the constants, it is noticed that, for any given value of y, & is

positive and 7 is negative. The two solutions of the quadratic equation, x; and x,, are linked by the

relationship

Y
Xlxz—a



As g < 0, one of the two solutions is negative and hence is meaningless. Therefore the positive solution

_ /R2 _
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is retained

Finally, fractional DNA occupancy 6p can be derived as a function of the buffered metal concentration

only as follows
Z

o =1- -
by
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Equation (19) can be solved using an electronic spreadsheet to calculate 6p given a range of buffered

Op =1

Op =1 (19)

metal concentrations (y), considering that the relationship between x and y is given by (18) (Supplemen-

tary Dataset).

1.3.2 Calculation of 6py and 6p; (an alternative approach)

A simplified form of equation (19) can be used to calculate numerical values of 6pg and Op; (3) from an
electronic spreadsheet (Supplementary Dataset).

1.3.3 Derivation of equation to determine Gpyg

Equation (4) can then be rewritten as

AP

= Aeow

6pm +Apw, (20)

where

Afpm = Bpm1 — Opwmo,
OBpmoAP
Abpy

Apm =Py —

and then using (9) and (2)
w
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x*(1+ay)(ad + abdy) +x[b(1 4 ay) — Babdy — (Apm — Dr)(ad 4 abdy)] — bApy = 0. (22)

Similarly to the previous case, equation (22) can be rewritten as

Ax2+ux+v =0,



where

A = (1+ay)(ad + abdy),
u =b(1+ay)— Babdy — (Apm — Dr)(ad + abdy),
Vv = —bApmMm.

Also in this case, A > 0 and v < 0 for any given value of y, the positive solution of the quadratic equation
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(23)
The expression of Opy as a function of y, the buffered metal concentration, is then
w

Opm = Dr
duz
Opm = Dr
abdxy
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Equation (24) can be solved using an electronic spreadsheet to calculate Opy given a [M] (y) range,

considering that the relationship between x and y is given by equation (23) (Supplementary Dataset).

1.3.4 Calculation of Bpyg9 and Opyy; (an alternative approach)

A simplified form of equation (24) can be used to calculate numerical values of Opyyg and Bpyy; (4) from

an electronic spreadsheet (Supplementary Dataset).

2 Calculation of fractional DNA occupancy at different salt concentrations

DNA affinities have a log-log dependence on salt concentration?>**. Apo-Zur, Zn(II)-Zur and Ni(II)-
NikR DNA affinities were experimentally determined at various salt concentrations, and the mean of the
regression lines of logKpya vs. log[salt] plots was used to calculate DNA affinities for the other sensors
at 500 mM salt from the values in Table 1 measured at 300 mM. With the K3 or K4 values at 500 mM

salt, fractional DNA occupancies 8p and Opy; were calculated using equations (19) and (24).

3 Derivation of fractional DNA occupancy as a function of buffered metal concentration
considering sensor binding to non-specific DNA

An excess of non-specific DNA competes in vivo with the specific consensus sequences for sensor
binding. To incorporate non-specific DNA, here represented as D*, in the model it is necessary to

introduce two additional reactions to the system presented in section 1.1:

D ==rD S DT
. K PMD*
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The total concentration of non-specific DNA binding sites, [Dj], can be calculated by dividing the
concentration of available non-specific DNA base pairs (10 M bp in E. coli?®) by the average length of

DNA binding sequences used as specific targets (33 bp). The mass balance for non-specific DNA is
[D7] = [D*] +[PD"] + [PMD"],
while the mass balance for the protein, incorporating sensor binding to non-specific DNA, is now
[Pr] = [P] 4+ [PM]+ [PD] + [PMD) + [PD*| + [PMD"].

The affinities of Zur for non-specific DNA, K3 and K, were experimentally measured on the nixA
promoter at 100 mM salt. Non-specific DNA affinities at 300 mM salt were calculated from the slope of
the regression line of the Zur logKpya vs log[salt] and the (small) coupling free energy on non-specific
DNA (AGZT =—RT ln(%)) was determined for Zur. The non-specific DNA affinities of the other sensors
were estimated by maintaining the same proportion between AG; and AG, and with K3 and K flanking
K3 for co-repressors and flanking K4 for the de-repressor and activators (K3 or K4 respectively defining
the midpoint on a logarithmic scale between K3 and Kj).

The fraction of specific DNA sites bound to sensor protein (6p) and the sub-fraction bound solely
to metalated sensor protein (Opy) are defined at each metal concentration by equations (1) and (2). For
co-repressors and de-repressors the total protein concentration [Pr] relates linearly to 6p as expressed
in equation (3), for CueR and ZntR-like activators the relationship between [Pr] and Opy is given in

equation (4).

3.1 Variables

In addition to the variables presented in 1.2, the additional variables and constants are renamed as follows

to simplify computation:

e=Kj3, h = [D*]

=Ky, i=[PD’]

g=K;, J=[PMD’]
Dy = [D1].

3.2 Derivation of equations

From the chemical equilibria and mass balances the following relationships are derived:
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Di=h+i+j, 27)

Pr=x+u+v+w+i+j=x+u+Dr—z+Dj—h. (28)



Using (25) and (26), i and j can be expressed as
i = exh, j= fuh
and & can then be derived from (27)

h:7D$
1+ex+ fu

3.2.1 Derivation of equation to determine 6p for co-repressors and de-repressors

Equation (11) can be rewritten using (13) and (28) as
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The variables u, z and & can be substitued into (30) to find x
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Equation (31) expresses the variable x (corresponding to [P]) as a function of y, the buffered metal

concentration [M]. It is possible to numerically solve the cubic equation using an electronic spreadsheet

or a computing environment. In all the cases examined a positive and two negative solutions were

obtained and the positive solution was retained to calculate Op from equation (19). Due to the complex

analysis required to solve the cubic equation, a Supplementary Dataset in not provided.

3.2.2 Calculation of 6p( and 6p;

A simplified form of equation (31) can be used to calculate numerical values of 8py and 6p; (3) from an

electronic spreadsheet or a computing environment.



3.2.3 Derivation of equation to determine Opy;

Equation (20) can be rewritten using (2), (10) and (28) as
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Equation (33) can be numerically solved using an electronic spreadsheet or a computing environ-
ment. In all the cases examined a positive and two negative solutions were obtained and the positive

solution was used to calculate Bpy; from equation (24). Due to the complex analysis required to solve

the cubic equation, a Supplementary Dataset in not provided.

3.2.4 Calculation of 6ppg9 and Bpny

A simplified form of equation (33) can be used to calculate numerical values of Oppg and Opyy; (3) from

an electronic spreadsheet or a computing environment.

4 Derivation of the relationship between total metal bound to buffer and buffered metal

concentration

The buffered metal system is described as

Ks [BM]
B+M —= BM, Ks = 7 34
= BM) G4

The concentration of buffering species, [Br], and the total metal concentration in the buffer system, [Mr],
are:
[Mr] = [M] + [BM] (35)
[Br] = [B] + [BM] (36)

From equations (35) and (36), [BM] and [B] can be derived and substituted into equation (34):
[BM] = [M7] — [M]

[B] = [Br| — [BM] = [Br] — [M7] + [M]
[Mr] — [M]

K= B~ e+ M) M)

(37)



Equation (37) can be rearranged to express [Mr| as a function of [M]

Ks[M]* + (Ks[Br] + 1)[M]

[Mr| = 1+ Ks[M]

(38)
An example of the use of this relationship is shown in Figure 4b.
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